
Core Language

Full documentation

Comments
Comment to end of line.
#-…-# Multi-line comment.

Identifier
A string start with an underscore or letter, followed by some
underscore, letters or numbers (case sensitive). Identifiers are
generally used as names of objects or variables.

Reserved Identifiers
if elif else while for def
end class break continue return true
false nil var do import as
try except raise static

Operators
() [] . - ! ~ * / % + - <<
>> & ^ | .. < <= > >= == != && || ?
: = += -= *= /= %= &= |= ^= <<= >>= { }

String
'…' "…"

string delimiters; special characters need to be escaped:
\a bell \b backspace \f form feed
\n newline \r return \t tab
\v vert. tab \\ backslash \' single quote
\" double quote \? question \0 NULL
\ooo character represented octal number.
\xhh character represented hexadecimal number.

Types
nil Means no value (written as nil).
boolean Contains true and false.
integer Signed integer number.
real Floating point number.
string Can include any character (and zero).
function First class type, can be assigned as a value.
class Instance template, read only.
instance Object constructed by class.
module Read-write key-value pair table.
list Variable-length ordered container class.
map Read-write hash key-value container class.
range Integer range class.

Variable and Assignment examples
a = 1 Simple assignment (or declare variables).
var a Declare variables and initialize to nil.
var a, b Declare multiple variables.
var a=0,b=1 Declare multiple variables and initialize.
a = 1 + 3 Operation and assignment.

Expression and Statement
expression Consist of operators, operands, and group-

ing symbols (brackets), etc. All expressions
are evaluable.

statement The most basic execution unit. Consists of
an assignment expression or function call
expression.

walrus Combines an assignment to a variable
which value can be used as an expression.

Examples:
4.5 A simple expression, just an operand.
!true Logical not expression, unary operation.
1+2 An addition expression, binary operation.
print(12) Function call expression.
print(a := 12) Walrus assigment and expression.

Operators in precedence order
()(call) [](index) .(field)
! ~ -(negative)
* / %
+ -
<< >> (bitwise shift operators)
& (bitwise and)
^ (bitwise xor)
| (bitwise or)
.. (connect or range)
< <= > >=
== !=
&& (stops on false, returns last evaluated value)
|| (stops on true, returns last evaluated value)
+ -
? : (conditional expression)
= (= and other assignment operators)
:= (:= walrus operator assignment, as expression)

Conditional expression
condition ? expression1 : expression2

If the value of condition is true, then expression1 will be
executed, otherwise expression2 will be executed. The con-
ditional expression return the the last evaluated value.

Logical operations and Boolean
The condition detection operation require a Boolean value,
and non-boolean type will do the following conversion:

nil Convert to false.
number 0 converted to false.
string Empty string converted to false.
bytes Empty bytes buffer converted to false.
comptr 0 (NULL) converted to false.
comobj 0 (NULL) converted to false.
instance Try to use the result of the tobool() method,

otherwise it will be converted to true.
other Convert to true.

Scope, blocks and chunks
block Is the body of a control structure, body of a function

or a chunk. The block consists of several statements.
chunk A file or string of script.

Variables defined in the chunk have a global scope, and
those defined in other blocks have a local scope.

Control structures
if cond block {elif cond block} [else block] end
do block end
while cond block end
for id : expr block end iterative statement.
break exits loop (must be in while or for statement).
continue start the next iteration of the loop (must be in
while or for statement).

return [expr] exit function and return a (nil) value.

1 of 7

https://github.com/berry-lang/berry/wiki/Reference

NOTE: expression aka. expr; identifier aka. id; and condition
aka. cond.

Modules
Berry has some predefined modules (like math). You can ex-
tend the runtime with your own modules, either as Berry code
or native code.
import name [as variable]

Load the module name and store in local or global variable
name or variable if latter is defined.

Once a module is loaded, you can’t change its content unless
you use module import introspect, see below.

Function and Lambda expression
def name (args) block end

A named function is a statement, the name is a identifier.
def (args) block end

An anonymous function is an expression.
/args-> expr

Lambda expression, the return value is expr.
id {, id}

Arguments list (aka. args), Lambda expression arguments
list can omit “,”.

Class and Instance
class name [: super]

{var id{, id}}
| {static var id{=expr}}{, id{=expr}}
| [static] def id (args) block end}

end
class consists of the declaration of some member variables
and methods. name is the class name (an identifier); super
is the super class (an expression).

Members and static members
Methods have an implicit first argument self used to access
members.
Static methods (or Class methods) have an implicit _class
argument to access the class object.

Accessing members
instance.key

Access the instance method or variable by literal name.
instance.(string)

Access the instance method or variable dynamically by
string.
Use instance.a or instance.("a")

class.key
Access the class (static) method or variable by literal name.

class.(string)
Access the class (static) method or variable dynamically by
string.

List Instance
l=[] New empty list value.
l=[0] The list has a value “0”.
l=[[],nil] l[0]==[] and l[1]==nil; different types of

values can be stored in the list.

Map Instance
m={} New empty map value.
m={0:'ok','k':nil} l[0]=='ok' and l['k']==nil;

the key can be any value that is
not nil.

Range Instance
r=0..5 New range from 0 to 5 included.

Exception handling
raise exception [, message]

Raise a exception value and optional message value.
try
block {

except ((expr {, expr} | ..) [as id [, id]] | ..)
block

} end
One or more except blocks must exist. Only runtime ex-
ceptions can be caught.

Some except statements examples:
except .. Catch all exceptions, but no excep-

tion variables.
except 0,1 as .. Capture 0 and 1, no exception vari-

ables.
except .. as e Capture all exception to variable e.
except 0 as e Capture exception 0 to variable e.
except .. as e,m Capture all exception to variable e,

and save the message to variable m.

Basic Library

Global Functions
assert(expr [, msg])

Raises 'assert_failed' when expr is false, and msg is an
optional exception message.

print(…)
Print all arguments to stdout.

input([prompt])
Read a line of text from stdin, prompt is optional prompt
message.

super(object)
Get the superclass of a class object or the sub-instance of
instance object from its superclass. The object is a class or
an instance.

type(expr)
Get the type name string of expr.

classname(object)
Get the class name of object. The object is a class or an
instance.

classof(object)
Get the class of object, and return nil when it fails.

number(expr)
int(expr)
real(expr)

Convert expr to a number (automatically detect integer or
real), integer or real respectively, and return 0 or 0.0 if the
conversion fails.

str(expr)
Convert expr to a string. For instance, it will try to call
the tostring method.

2 of 7

bool(expr)
Convert expr to a bool.

module([name])
Create an empty module, and name is an optional module
name.

size(expr)
Get the length of the string or instance (by calling the size
method).

compile(text [, mode])
When mode is 'string', text is evaluated as a script, and
when mode is 'file', a script file whose path is text is
read and evaluated. The mode is 'string' by default.

issubclass(sub, sup)
Returns true if sub (class) is sup (class or instance) or its
derived class, otherwise return false.

isinstance(obj, base)
Returns true if obj is an instance of base (class or instance)
or its derived class, otherwise return false.

call(function[, args][, list])
Call a function with arbitrary number of arguments, all
args are pushed as static arguments. If the last argument
is a list, all elements are pushed as elementary arguments.

open(path[, mode])
Open a file by path and return an instance of this file. The
file is opened in the specified mode:
'r' read-only mode, the file must exist.
'w' write-only mode, always create a empty file.
'a' Create a empty file or append to the end of an

existing file.
'r+' read-write mode, the file must exist.
'w+' read-write mode, always create a empty file.
'a+' read-write mode, create a empty file or append to

the end of an existing file.
'b' binary mode, it can be combined with other access

modes.

File Members
file.write(string | bytes)

Write the text or raw bytes to the file.
file.read([count])

If the count is specified, the number of bytes will be read,
otherwise the entire file will be read.

file.readbytes([count])
Return raw bytes instead of string. If the count is specified,
the number of bytes will be read, otherwise the entire file
will be read.

file.readline()
Read a line from the file (the newline character is deter-
mined by the platform).

file.seek(offset)
Set the file pointer to offset.

file.tell()
Get the offset of the file pointer.

file.size()
Get the size of the file.

file.flush()
Flush the file buffer.

file.close()
Close the file.

List Members
Full documentation
list() or list(args)

Constructor, put the elements in args into list one by one.
Also use [].

list[index]
Can be used to read or write at index, raises an exception
if index is out of bounds. Equivalent to list.item() and
list.setitem().

list[a .. b]
Returns a sub-list containing elements from index a to b
included. If b is omitted it includes all elements to the end
of thelist. If b is negative, it counts from the end of the list
(ex list[1 .. -2] removes the first and last elements).
Equivalent to list.item().

listt[list]
Returns a sub-list from the indices of the list, returns
nil element if an index is out of bounds. Equivalent to
list.item().

list.tostring()
Serialized the list instance.

list.push(value)
Append the value to the tail of the list.

list.pop([index])
Remove the element at index (the default index is −1) from
the list.

list.insert(index, value)
Insert the value before the element at index.

list.item(index)
Get the element at index. The index can be an integer, and
a list or range instance, raises an exception if index is out
of bounds.

list.setitem(index, value)
Set the element referenced at index to value, raises an ex-
ception if index is out of bounds.

list.size()
Get the number of elements in the list instance; equivalent
of size(list).

list.resize(expr)
Modify the number of elements to the value of expr. The
added elements are set to nil, and the reduced elements
are discarded.

list.clear()
Clear all elements in the list instance.

list.iter()
Get the iterator function of the list instance.

list.keys()
Return a range object containing indices of the list.

list.concat()
Serialize and concatenate all elements in the list instance
into a string.

list.reverse()
Reverse the order of all elements in the list instance.

list.copy()
Copy the list instance, not copy the element but keep the
reference.

list .. expr
Append the value of expr to the tail of the list instance and
return that instance.

3 of 7

https://github.com/berry-lang/berry/wiki/Chapter-7#list-class

list + list
Concatenate two list instances and return the left operand
instance.

list == expr
Check if two list instances are equal. It checks all elements
one by one.

list != expr
Check if two list instances are not equal. It checks all ele-
ments one by one.

Map Members
Full documentation
map()

Constructor. Also use {}.
map.tostring()

Serialized the map instance.
map.insert(key, value)

Insert a key-value pair and return true, and return false
when the insertion fails (e.g. the pair already exists).

map.remove(key)
Remove the key-value pair by the key.

map.item(key)
Get the value mapped by the key. It will raise a
"key_error" exception when the key-value pair does not
exist.

map.setitem(key, value)
Set the value mapped by the key. If the key-value pair does
not exist, a new one will be inserted.

map.insert(key, value)
Set the value mapped by the key only if key does not exist,
and returns true. Returns false and do not update the
value if key already exists.

map.contains(key)
Returns true if the map contains the key.

map.find(key)
Get the value mapped by the key. It will return nil when
the key-value pair does not exist.

map.size()
Get the number of key-value pairs in the map instance;
equivalent of size(map).

map.iter()
Get the iterator function over the values of the map in-
stance.

map.keys()
Get the iterator function over the keys of the map instance.

Range Members
Full documentation
range(lower, upper{, increment})

The constructor. The range is from lower to upper, and
the step is 1 or increment. increment can be negative.

range.tostring()
Serialized the rang instance.

range.iter()
Get the value iterator function of the range instance.

range.lower()
Get the lower value of the range instance.

range.upper()
Get the upper value of the range instance.

range.incr()
Get the increment value of the range instance.

range.setrange(lower, upper{, increment})
Changes the lower, upper, and increment, does not change
an existing iterator.

The String Library

import string
Full documentation

Basic operations
string.count(s, sub[, begin[, end]])

Count the number of occurrences of the sub string in the
string s. Search from the position between begin and end
of s (default is 0 and size(s)).

string.split(s, pos)
Split the string s into two substrings at position pos, and
returns the list of those strings.

string.split(s, sep[, num])
Splits the string s into substrings wherever sep occurs, and
returns the list of those strings. Split at most num times
(default is string.count(s, sep)).

string.find(s, sub[, begin[, end]])
Check whether the string s contains the substring sub. If
the begin and end (default is 0 and size(s)) are specified,
they will be searched in this range. Returns −1 if not found.

string.startswith(s, sub[, case_insensitive])
string.endswith(s, sub[, case_insensitive])

Check whether the string s starts/ends with the substring
sub; case-insensitive if case_insensitive is true.

string.hex(number)
Convert number to hexadecimal string.

string.byte(s)
Get the code value of the first byte of the string s.

string.char(number)
Convert the number used as the code to a character.

Transformation
string.toupper(text)
string.tolower(text)

Convert the text to uppercase or lowercase; ASCII only no
support for Unicode.

string.tr(text, chars, char_or_empty_string)
Replaces in text any occurrence of character(s) from chars
to a single character, or remove if empty string.

string.replace(text, text1, text2)
Replaces in text occurrence of text1 with text2 (this is
slower than string.tr()

string.escape(text[, berry_mode])
Escapes the string with double quotes suitable for C, if
berry_mode is true escape to single quotes suitable for
Berry.

Formatting
string.format(fmt[, args])
format(fmt[, args])

Returns a formatted string. The pattern starting with '%'
in the formatting template fmt will be replaced by the
value of [args]: %[flags][fieldwidth][.precision]type

4 of 7

https://github.com/berry-lang/berry/wiki/Chapter-7#map-class
https://github.com/berry-lang/berry/wiki/Chapter-7#range-class
https://github.com/berry-lang/berry/wiki/Chapter-7#string-module

Types
%d %i Decimal integer.
%u Unsigned decimal integer.
%o Octal integer.
%x %X Hexadecimal integer lowercase, uppercase.
%f Floating-point in the form [-]nnnn.nnnn.
%e %E Floating-point in exp. form [-]n.nnnn e [+|-

]nnn, uppercase if %E.
%g %G Floating-point as %f if −4 < exp. ≤ precision,

else as %e; uppercase if %G.
%c Character having the code passed as integer.
%s String.
%q Escaped string.
%% The '%' character (escaped).

Flags
- Left-justifies, default is right-justify.
+ Prepends sign (applies to numbers).
(space) Prepends sign if negative, else space.
Adds "0x" before %x, force decimal point; for

%e, %f, leaves trailing zeros for %g.
Field width and precision

n Puts at least n characters, pad with blanks.
0n Puts at least n characters, left-pad with zeros.
.n Use at least n digits for integers, rounds to n deci-

mals for floating-point or no more than n chars. for
strings.

Simplified Formatting with f-strings
An alternative syntax using f-strings allows more compact

formatting. They are synctactic sugar around format()
function, so they have the same performance.

f-strings are preceded by f and can use single or double quotes.
String can be split on several literals and lines.
f"This uses double quotes"
f'This uses single quotes'
f"This" 'uses' "a combination" 'of quotes'

Values and expressions are surrounded by { }
f"Hello {name}"
f"1 + 1 is {1 + 1}"

For brackets, use double-brackets. JSON example:
f'{{"name":"{name}"}}'

The default format is %s (string). You can specify a format
after a colon ’:’. The character ’%’ is not required.
f"The price is {price:.2g}"

For fast debugging, use equal sign ’=’ to dump a value with
its name:
f"{name=} {price=:.2g}"
format("name=%s price=%.2g", name, price")
name=bob price=12.34

More examples:
’f"a = {self.a}"’ is ’format("a = %s", self.a)’
’f"{self.a:04i}"’ is ’format("%04i", self.a)’
’f"{self.a=}"’ is ’format("self.a=%s", self.a)’
’f"{self.a=:g}"’ is ’format("self.a=%g", self.a)’

The Math Library

import math
Full documentation

Constants
math.pi

Pi number (3.14159 or 3.141592654 depending or resolu-
tion).

math.inf
Infinity, can be positive or negative.

math.nan
NaN Not-a-Number used to indicate an invalid number.
Fun fact: math.nan != math.nan

math.imin
Smallest possible integer depending on compilation options
(-2147483648 or -9223372036854775808).

math.imax
Biggest possible integer depending on compilation options
(2147483647 or 9223372036854775807).

Integer conversion
math.floor(value)

Return the rounded down value as real.
math.ceil(value)

Return the rounded up value as real.
math.round(value)

Return the rounded value as real, rounded down for posi-
tive and up for negative.

General functions
math.abs(value)

Return the positive absolute value of value as real.
math.min([values]*)
math.max([values]*)

Return the minimum/maximum value among all values, as
int or as real any argument is real.

math.rand()
Return a random int. This is not cryptographic quality.

math.srand(int)
Seed the random generator with int.

math.isinf(value)
Return true if value is a inf or -inf.

math.isnan(value)
Return true if value is a NaN Not-a-Number.

Log & Exponent
math.sqrt(value)

Return the square root of value.
math.log(value)

Return the natural logarithm of value.
math.log10(value)

Return the logarithm in base 10 of value.
math.exp(value)

Return the natural exponent of value.
math.pow(x, y)

Return x to the power of y.

Trigonometry
math.sin(value)
math.cos(value)

5 of 7

https://github.com/berry-lang/berry/wiki/Chapter-7#math-module

math.tan(value)
Return the sine, cosine, tangent of value (int or real) in
radians, returns a real.

math.asin(value)
math.acos(value)
math.atan(value)

Return the arc sine, arc cosine, arc tangent of value (int
or real) in radians, returns a real.

math.atan2(y, x)
Return the arc tangent of y / x in radians, works even if x
is zero.

math.deg(value)
Convert radians to degrees.

math.rad(value)
Convert degrees to radians.

Hyperbolic
math.sinh(value)
math.cosh(value)
math.tanh(value)

Return the hyperbolic sine, cosine, tangent of value (int
or real) in radians, returns a real.

The Bytes Library

bytes() is a native class used to manipulate raw bytes.
Full documentation
bytes()

Constructor for an empty bytes object.
bytes(size)

Constructor for an empty bytes object, pre-allocate size
bytes to optimize memory allocation.
If size is negative, pre-allocate (-size) bytes and make ob-
ject fixed size, filling with zeros.

bytes(comptr, size)
Constructor to a bytes object mapped at a fixed memory
location comptr and of fixed size.

General Functions
bytes.size()

Return the size of content in bytes; equivalent of
size(bytes).

bytes.resize(size)
Resize the object to size bytes, truncate or fill with zeros if
needed; unless the buffer is fixed size.

bytes.clear()
Reset the object to an empty bytes(); unless the buffer is
fixed size.

bytes.reverse([start, [len, [grouplen]]])
Reverse the bytes from start over len (or full buffer if not
specified) over groups of grouplen bytes (or single bytes).
This is useful for RGB pixel manipulation.

bytes.copy()
Copy to a new separate object.

bytes==bytes
bytes!=bytes

Return true if content of bytes are equal or different.
bytes .. bytes

Append the second bytes to the first bytes.

bytes + bytes
Create a new bytes buffer containing the concatenation of
both bytes.

bytes.ismapped()
Return true if the buffer is mapped to a fixed location in
memory.

Accessor Functions
bytes[index]

Read or write byte at index as int; raises an exception if
index is out of bounds.

bytes[start..end]
Return a new instance of bytes containing bytes from start
to end included. Indices can be out of bounds. If end is
omitted, copy to the end of the buffer. If start or end are
negative, count from end of buffer (-1 is last byte).

bytes.get(offset, size)
Read the value at offset as an unsigned integer of size bytes
(size can be 1, 2, 3, 4 for Little Endian or −2, −3, −4 for
Big Endian). Return 0 if indices are out of bounds.

bytes.geti(offset, size)
Same as get above as signed integer.

bytes.set(offset, value[, size])
Set the value at offset as an unsigned integer of size bytes
(default 1) with value (size can be 1, 2, 3, 4 for Little Endian
or −2, −3, −4 for Big Endian). No effect if indices are out
of bounds.

bytes.seti(offset, value[, size])
Same as set above as signed integer.

bytes.add(value, size)
Append value to the bytes buffer as size bytes (size can be
1, 2, 3, 4 for Little Endian or −2, −3, −4 for Big Endian).

bytes.getfloat(offset[, big_endian])
Read the value at offset as a 4 bytes floating point number.
If big_endian is true read as Big Endian.

bytes.setfloat(offset, value[, big_endian])
Set the value at offset to a 4 bytes floating point number
from value. If big_endian is true read as Big Endian.

bytes.getbits(offset_bits, len_bits, value)
Read at bit level from offset_bits of len_bits.

bytes.setbits(offset_bits, len_bits)
Set at bit level from offset_bits of len_bits with value.

bytes.setbytes(offset, bytes2, [start, [len]])
Set buffer at offset from bytes2; copy entier buffer or only
from start with len.

Conversion Functions
bytes.tostring([max_size])

Convert bytes buffer to a string representation. To prevent
memory exhaustion, only 32 bytes or to max_size.

bytes.tohex()
Convert bytes buffer to a hex string, without bytes()
decorator.

bytes.fromhex(string)
Replace bytes buffer from string as hex string.

bytes.asstring()
Convert bytes buffer to a string containing the raw bytes.

bytes.fromstring(string)
Replace bytes buffer from string as raw bytes.

bytes.tob64()
Convert bytes buffer to a base64 string.

6 of 7

https://github.com/berry-lang/berry/wiki/Chapter-7#bytes-class

bytes.fromb64(string)
Replace bytes buffer from string as base64.

The Global Library

import global
Full documentation
global()

Return the list of all global variables.
global.contains(id)

Return true if the global variables exists.
global.member(id)
global.id

Return value of global variable id or nil if it does not exists.
global.(string)

Return value of global variable string by name or nil if it
does not exists. Example: global.("a")

global.setmember(id, value)
global.id = value

Set global variable id to value, create the global variable if
needed.

The JSON Library

Full documentation
json.load(string)

Concatenate string into a complete path.
json.dump(any)

Convert any to a JSON string.

The Instrospect Library

import introspect
Full documentation
introspect.members(any)

Return the list of names of members for the class,
instance or module.

introspect.members()
Return the list of global variables, equivalent to global().

introspect.get(any, id)
Read the attribute id for any, returns nil if key does not
exist.

introspect.set(any, id, value)
Set the attribute id for any to value.

introspect.name(any)
Return the name of any (function, class or module) or nil.

introspect.ismethod(function)
Return true if the function is a method of a class, false
it it’s a standalone function.

introspect.module(name)
Import module passed by name.

introspect.setmodule(name, any)
Change the value for module name; use with caution as it
can disrupt the runtime.

introspect.toptr(int) introspect.fromptr(comptr)
Convert an int to comptr and backwards, works only for
platforms where integers and pointers are the same size.

The OS Library

Full documentation

os.getcmd()
Get the path of the current directory.

os.chdir(path)
Switch the current folder to the path.

os.mkdir(path)
Create a level of directory (with path).

os.remove(path)
Delete file of directory form path.

os.listdir([path])
Return a list of file and folder names contained in the spec-
ified path (the default is '.').

os.system(cmd[, args])
Execute a system command.

os.exit()
Exit the interpreter process.

The os.path Module
os.path.isdir(path)

Check if the path is a folder.
os.path.isfile(path)

Check if the path is a file.
os.path.exists(path)

Check if the path already exists.
os.path.split(path)

Split the path into dir-name and base-name.
os.path.splitext(path)

Split the path into file-name and ext-name.
os.path.splitext(args)

Concatenate args into a complete path.

7 of 7

https://github.com/berry-lang/berry/wiki/Chapter-7#module-global
https://github.com/berry-lang/berry/wiki/Chapter-7#json-module
https://github.com/berry-lang/berry/wiki/Chapter-7#module-introspect
https://github.com/berry-lang/berry/wiki/Chapter-7#module-os

